## Thursday, December 24, 2015

### Infix Notation Parser via Shunting-Yard Algorithm

Infix notation is the typical notation for writing equations in algebra.
An example would be: 7 - (2 * 5)

Parsing such an equation is not a trivial task, but I wanted one for my EquationFinder project, as I wanted to respect order of operations.

Strategies include substitution/replacement algorithms, recursion to parse into a tree and then tree traversal, or converting the infix notation to reverse polish notation (RPN), also known as post-fix notation, then using a stack based postfix notation evaluator. I choose the latter, as such algorithms are well defined in many places on the web.

My code consists of 3 classes, all static:
(Links go to the .cs file on GitHub)
1. InfixNotation - this simply holds a few public variables and calls the public methods on the below two classes.
2. ShuntingYardAlgorithm - this converts an equation in infix notation into postfix notation (aka RPN).
3. PostfixNotation - this evaluates the equation in postfix notation and returns a numerical result value.

In order to implement the shunting-yard algorithm and the postfix evaluator, I simply wrote the steps to the algorithms as written on Wikipedia:
(Links go to the Wikipedia article)
Link to the Shunting-Yard Algorithm to convert Infix notation to Postfix notation.
Link to the Postfix Notation Evaluation Algorithm.

The code for this is pretty extensive, but I will prettify it and present it below. Alternatively, you can view and download the code from the MathNotationConverter project on my GitHub.

### InfixNotationParser:

public static class InfixNotation
{
public static string Numbers = "0123456789";
public static string Operators = "+-*/^";

public static bool IsNumeric(string text)
{
return string.IsNullOrWhiteSpace(text) ? false : text.All(c => Numbers.Contains(c));
}

public static int Evaluate(string infixNotationString)
{
string postFixNotationString = ShuntingYardConverter.Convert(infixNotationString);
int result = PostfixNotation.Evaluate(postFixNotationString);
return result;
}
}

## ShuntingYardConverter

(converts an equation from infix notation into postfix notation):

public static class ShuntingYardAlgorithm
{
private static string AllowedCharacters = InfixNotation.Numbers + InfixNotation.Operators + "()";

private enum Associativity
{
Left, Right
}
private static Dictionary<char, int> PrecedenceDictionary = new Dictionary<char, int>()
{
{'(', 0}, {')', 0},
{'+', 1}, {'-', 1},
{'*', 2}, {'/', 2},
{'^', 3}
};
private static Dictionary<char, Associativity> AssociativityDictionary = new Dictionary<char, Associativity>()
{
{'+', Associativity.Left},
{'-', Associativity.Left},
{'*', Associativity.Left},
{'/', Associativity.Left},
{'^', Associativity.Right}
};

private static void AddToOutput(List<char> output, params char[] chars)
{
if (chars != null && chars.Length > 0)
{
foreach (char c in chars)
{
}
}
}

public static string Convert(string infixNotationString)
{
if (string.IsNullOrWhiteSpace(infixNotationString))
{
throw new ArgumentException("Argument infixNotationString must not be null, empty or whitespace.", "infixNotationString");
}

List<char> output = new List<char>();
Stack<char> operatorStack = new Stack<char>();
string sanitizedString = new string(infixNotationString.Where(c => AllowedCharacters.Contains(c)).ToArray());

string number = string.Empty;
List<string> enumerableInfixTokens = new List<string>();
foreach (char c in sanitizedString)
{
if (InfixNotation.Operators.Contains(c) || "()".Contains(c))
{
if (number.Length > 0)
{
number = string.Empty;
}
}
else if (InfixNotation.Numbers.Contains(c))
{
number += c.ToString();
}
else
{
throw new Exception(string.Format("Unexpected character '{0}'.", c));
}
}

if (number.Length > 0)
{
number = string.Empty;
}

foreach (string token in enumerableInfixTokens)
{
if (InfixNotation.IsNumeric(token))
{
}
else if (token.Length == 1)
{
char c = token[0];

if (InfixNotation.Numbers.Contains(c)) // Numbers (operands)
{
}
else if (InfixNotation.Operators.Contains(c)) // Operators
if (operatorStack.Count > 0)
{
char o = operatorStack.Peek();
if ((AssociativityDictionary[c] == Associativity.Left &&
PrecedenceDictionary[c] <= PrecedenceDictionary[o])
||
(AssociativityDictionary[c] == Associativity.Right &&
PrecedenceDictionary[c] < PrecedenceDictionary[o]))
{
}
}
operatorStack.Push(c);
}
else if (c == '(') // open brace
{
operatorStack.Push(c);
}
else if (c == ')') // close brace
{
bool leftParenthesisFound = false;
while (operatorStack.Count > 0 )
{
char o = operatorStack.Peek();
if (o != '(')
{
}
else
{
operatorStack.Pop();
leftParenthesisFound = true;
break;
}
}

if (!leftParenthesisFound)
{
throw new FormatException("The algebraic string contains mismatched parentheses (missing a left parenthesis).");
}
}
else // wtf?
{
throw new Exception(string.Format("Unrecognized character '{0}'.", c));
}
}
else
{
throw new Exception(string.Format("String '{0}' is not numeric and has a length greater than 1.", token));
}
} // end foreach

while (operatorStack.Count > 0)
{
char o = operatorStack.Pop();
if (o == '(')
{
throw new FormatException("The algebraic string contains mismatched parentheses (extra left parenthesis).");
}
else if (o == ')')
{
throw new FormatException("The algebraic string contains mismatched parentheses (extra right parenthesis).");
}
else
{
}
}

return new string(output.ToArray());
}
}

### PostfixNotation

(evaluates the postfix notation and returns a numerical result):

public static class PostfixNotation
{
private static string AllowedCharacters = InfixNotation.Numbers + InfixNotation.Operators + " ";

public static int Evaluate(string postfixNotationString)
{
if (string.IsNullOrWhiteSpace(postfixNotationString))
{
throw new ArgumentException("Argument postfixNotationString must not be null, empty or whitespace.", "postfixNotationString");
}

Stack<string> stack = new Stack<string>();
string sanitizedString = new string(postfixNotationString.Where(c => AllowedCharacters.Contains(c)).ToArray());
List<string> enumerablePostfixTokens = sanitizedString.Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).ToList();

foreach (string token in enumerablePostfixTokens)
{
if (token.Length > 0)
{
if (token.Length > 1)
{
if (InfixNotation.IsNumeric(token))
{
stack.Push(token);
}
else
{
throw new Exception("Operators and operands must be separated by a space.");
}
}
else
{
char tokenChar = token[0];

if (InfixNotation.Numbers.Contains(tokenChar))
{
stack.Push(tokenChar.ToString());
}
else if (InfixNotation.Operators.Contains(tokenChar))
{
if (stack.Count < 2)
{
throw new FormatException("The algebraic string has not sufficient values in the expression for the number of operators.");
}

string r = stack.Pop();
string l = stack.Pop();

int rhs = int.MinValue;
int lhs = int.MinValue;

bool parseSuccess = int.TryParse(r, out rhs);
parseSuccess &= int.TryParse(l, out lhs);
parseSuccess &= (rhs != int.MinValue && lhs != int.MinValue);

if (!parseSuccess)
{
throw new Exception("Unable to parse valueStack characters to Int32.");
}

int value = int.MinValue;
if (tokenChar == '+')
{
value = lhs + rhs;
}
else if (tokenChar == '-')
{
value = lhs - rhs;
}
else if (tokenChar == '*')
{
value = lhs * rhs;
}
else if (tokenChar == '/')
{
value = lhs / rhs;
}
else if (tokenChar == '^')
{
value = (int)Math.Pow(lhs, rhs);
}

if (value != int.MinValue)
{
stack.Push(value.ToString());
}
else
{
throw new Exception("Value never got set.");
}
}
else
{
throw new Exception(string.Format("Unrecognized character '{0}'.", tokenChar));
}
}
}
else
{
throw new Exception("Token length is less than one.");
}
}

if (stack.Count == 1)
{
int result = 0;
if (!int.TryParse(stack.Pop(), out result))
{
throw new Exception("Last value on stack could not be parsed into an integer.");
}
else
{
return result;
}
}
else
{
throw new Exception("The input has too many values for the number of operators.");
}

} // method
} // class

Another alternative technique is to using the Shunting-Yard Algorithm to turn infix notation into an abstract syntax tree (Linq.Expressions anyone?). I will likely post this technique later.

Other blog posts by me that are related to this article are the Threaded Equation Finder, a Mixed Radix System Calulator and Drawing Text Along a Bezier Spline.

## Tuesday, December 1, 2015

### Detailed Exception class

The C# StackTrace class can be useful for logging the source of errors, but when your assembly is built in Release mode, you lose valuable information in the StackFrame, like the line number, the column number or the file name.

Part of my error handling strategy involved setting an error string, and using StackTrace to log the function calling the setter and the location in the code the error occurred. Unfortionatly, as mentioned above, I was losing error information like line number, and that kind of information sure is nice to have. Thats why I invented the DetailedException class.

In .NET 4.5, one can get caller information by the use of default value parameters tagged with an special attribute, namely CallerFilePathAttribute, CallerMemberNameAttribute, CallerLineNumberAttribute.

[Serializable]
public class DetailedException : Exception
{
public int SourceLineNumber { get; private set; }
public string SourceFilePath { get; private set; }
public string SourceMemberName { get; private set; }

public DetailedException(string message,
[CallerMemberName] string sourceMemberName = "",
[CallerFilePath] string sourceFilePath = "",
[CallerLineNumber] int sourceLineNumber = 0)
: base(message)
{
this.SourceMemberName = sourceMemberName;
this.SourceFilePath = sourceFilePath;
this.SourceLineNumber = sourceLineNumber;
}

Now if you have to throw an exception, throw new DetailedException("Testing DetailedException. WOW. SUCH DETAILS."); and you will gain information like SourceLineNumber!

If you decide to overload the constructor, be warned: You will be required to use named parameters when calling the DetailedException constructor

### A Simple Word Prediction Library

The word prediction feature on our phones are pretty handy and I've always and thought it would be fun to write one, and last night I decided to check that off my list. As usual, the whole project and all of its code is available to browse on GitHub. I talk more about the library and the design choices I made below the obnoxiously long image:

[Image of Windows Phone's Word Prediction feature]

Visit the project and view the code on my GitHub, right here.
(Project released under Creative Commons)

## Overview:

One thing you might notice, if for no other reason than I bring it up, is that I favor composition over inheritance. That is, my classes use a Dictionary internally, but they do not inherit from Dictionary. My word prediction library is not a minor variation or different flavor of the Dictionary class, and while it might be cool to access the word predictions for a word via an indexer, my word prediction library should not be treated as a dictionary.

## Under the hood:

There is a dictionary (a list of key/value pairs) of 'Word' objects. Each Word class has a value (the word), and its own dictionary of Word objects implemented as its own separate class (that does not inherit from Dictionary). This hidden dictionary inside each Word class keeps track of the probabilities of the the next word, for that given word. It does so by storing a Word as the key, and an integer counter value that gets incremented every time it tries to add a word to the dictionary that already exists (similar to my frequency dictionary, covered here).
The WordPredictionDictionary class doesn't grow exponentially, because each word is only represented once, by one Word class. The dictionaries inside the Word class only stores the references to the Word objects, not a copy of their values.
In order to begin using the WordPredictionDictionary to suggest words, one must train the WordPredictionDictionary on a representative body of text.

## TODO:

• Write methods to serialize the trained data sets so they can be saved and reloaded. This has been implemented.
• Write an intelli-sense-like word suggestion program that implements the WordPredictionDictionary in an end-user application.